PHYSICAL REVIEW B 80, 235318 (2009)

Universal zero-bias conductance through a quantum wire side-coupled to a quantum dot
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A numerical renormalization-group study of the conductance through a quantum wire containing noninter-
acting electrons side-coupled to a quantum dot is reported. The temperature and the dot-energy dependence of
the conductance are examined in the light of a recently derived linear mapping between the temperature-
dependent conductance and the universal function describing the conductance for the symmetric Anderson
model of a quantum wire with an embedded quantum dot. Two conduction paths, one traversing the wire, the
other a bypass through the quantum dot, are identified. A gate potential applied to the quantum wire is shown
to control the current through the bypass. When the potential favors transport through the wire, the conduc-
tance in the Kondo regime rises from nearly zero at low temperatures to nearly ballistic at high temperatures.
When it favors the dot, the pattern is reversed: the conductance decays from nearly ballistic to nearly zero.
When comparable currents flow through the two channels, the conductance is nearly temperature independent
in the Kondo regime, and Fano antiresonances in the fixed-temperature plots of the conductance as a function
of the dot-energy signal interference between them. Throughout the Kondo regime and, at low temperatures,
even in the mixed-valence regime, the numerical data are in excellent agreement with the universal mapping.
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I. INTRODUCTION

The physics of nanostructured devices displays many fac-
ets. Among the most interesting ones, interference ranks
high, because it is controllable, challenges classical intuition
and adds colorful features to experimental plots. Iconic as
the Aharonov-Bohm setup is in this context,'~ a great deal
of attention has been given to a more elementary interfero-
metric geometry: a quantum wire side coupled to a quantum
dot.!7-1® An infinitesimal bias applied to the noninteracting
electron gas in the quantum wire is sufficient to induce a
current.

The dynamics of this 7-shaped device parallels that of a
single-electron transistor, the alternative arrangement that
embeds the dot in the conduction path.!” Either in the em-
bedded or in the side-coupled geometry, the dot occupancy
n, is controlled by a gate potential V,. For odd n, the dot
magnetic moment interacts antiferromagnetically with the
wire electrons. At sufficiently low temperatures, the quantum
dot is shrouded by a Kondo cloud. The Kondo cloud can
either favor or impede conduction, depending on the geom-
etry. In the embedded arrangement, the strong coupling be-
tween the conduction and the dot electrons overcomes the
Coulomb blockade and allows conduction. The conductance
is enhanced at low temperatures. In the particle-hole sym-
metric limit, an early numerical renormalization group
(NRG) study showed that the conductance is a monotoni-
cally decreasing universal function G5(T/T) of the tempera-
ture scaled by the Kondo temperature. '8

In the side-coupled geometry, by contrast, the cloud ob-
structs transport along the segment of the quantum wire next
to the dot. In the simplest T-shaped device, the conductance
decays from nearly ballistic to nearly zero as the system is
cooled below the Kondo temperature Tx. More elaborate
T-shaped setups accommodate an alternative conduction path
through the quantum dot, a detour around the blocked wire

1098-0121/2009/80(23)/235318(13)

235318-1

PACS number(s): 73.21.La, 72.15.Qm, 73.23.Hk

segment.'>!31° While the conductance through the wire
grows with the temperature, the dot bypass faces the Cou-
lomb blockade at high temperatures and becomes conducting
at low temperatures. Thus, if the experimental conditions let
the wire path overwhelm the bypass, the conductance G
through the device will rise with the temperature, defining a
wirelike thermal dependence G,,(T). In the opposite extreme,
the dominance of the bypass defines a dotlike decaying func-
tion G,(T). When the tunneling probabilities along the two
paths are comparable, constructive and destructive patterns
emerge in the conductance profile, i.e., in the fixed-
temperature plot of the conductance as a function of the gate
potential V,. A recent experimental study has shown that a
gate voltage applied to the wire at low temperatures can turn
a low-conductance (i.e., wirelike) uniform profile first into a
succession of destructive and constructive interferences; and
then into a high-conductance (i.e., dotlike) uniform profile."”

Theoretical studies of the side-coupled geometry have ex-
plained a number of the features of the conductance
profiles,"*~1120 and computations of the temperature-
dependent conductance have also been reported.®!'>?° Re-
cently, we have derived a universal expression mapping the
Kondo-regime conductance G(T/Tx) of the T-shaped device
onto Costi’s, Hewson’s, and Zlatic’s!® universal function
G5(T/Tg).*' The mapping is linear. It shows that G(T/Ty) is
a linear combination of the dotlike conductance G (T/Ty)
=G5(T/Ty) with the wirelike conductance G, (T/Tx)=G,
-G ,(T/Tg), where G,=2¢*/h is the quantum conductance.
The linear coefficients are trigonometric functions of the
ground-state phase shift § imposed on the conduction elec-
trons by the gate potential applied to the wire and the cou-
pling to the quantum dot. When the phase shift increases
from zero to w/2, the linear combination changes from
G(TITg)=G,TITk) to G(T/Tx)=G,(T/Tk).

This paper proposes to show that the mapping reproduces
the conductance profiles, the temperature-dependent conduc-
tances, the emergence of destructive and of constructive in-
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terference, the change from wirelike to dotlike behavior—all
the above-described features of the experimental plots. To
this end we will present essentially exact numerical renor-
malization group results for the conductance of the 7-shaped
device as a function of the temperature and dot gate potential
for various gate potentials applied to the wire. The mapping
to the universal function G5(T/Tx) describes accurately each
calculated temperature-dependent conductance in the Kondo
regime and thus condenses in a simple expression the rich
variety resulting from the competition and interference be-
tween the two conduction paths in the side-coupled geom-
etry.

This paper belongs to a triplet dedicated to the conduc-
tance for the Anderson model of a wire coupled to a quantum
dot. Reference 22 discussed the embedded geometry, the first
part of the paper having derived the mapping between the
conductance and the universal function G3(T/T), and the
second presenting NRG data to illustrate and to probe the
accuracy of that mapping at the limits of the Kondo regime
and beyond them. Reference 21 related the conductance for
the T-shaped device and the universal function G3(T/Ty) and
showed that the mapping affords quantitative agreement with
experimental data reported in Refs. 13 and 19. Here, we
compare that analytical expression with essentially exact
NRG results for the conductance in the Kondo regime and in
the adjacent mixed-valence regimes.

Our presentation is divided in five sections. Section II
defines the model Hamiltonian and recalls basic concepts
associated with it. The mapping is discussed in Sec. III. A
comprehensive overview of the numerical results follows
(Secs. IV and V), including the comparison with the map-
ping to the universal function. Finally, Sec. VI summarizes
our conclusions.

II. MODEL

The overview of the numerical results in Secs. IV and V
will divide the parametrical space of the model in a number
of regimes, easily identified by their nearly uniform conduc-
tances. Before examining the NRG results, it is therefore
convenient to discuss the characteristic energies staking the
boundaries of those regimes. This section defines the model
Hamiltonian, relates the conductance to its eigenvalues and
eigenvectors, and refers to the pioneer investigations that led
to the characteristic scales in its spectrum.?3-2?

A. Hamiltonian

The quantum dot in Fig. 1 is side coupled to a quantum
wire. Gate potentials V,; and V,, control the occupations of
the dot and of the Wannier orbital

1
Jo \Trvg a. (1)

Current flows in response to a bias voltage. In standard no-
tation, the Anderson Hamiltonian capturing the physics of
this setup is
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FIG. 1. (Color online) T-shaped device. The circle depicts a
quantum dot side-coupled to a quantum wire. The gate potentials V,
and V,, control the electronic occupations of the dot and of the
Wannier orbital (1), respectively. The device allows interference
between the current flowing along the primary conduction path,
indicated by the white arrows, and the electrons that bypass the
central portion of the wire by way of the dot.

HA = E €ka;:ak + Wfafo + V(fgcd+ HC) + Hd' (2)
k

The first term on the right-hand side defines a noninteracting,
structureless half-filled conduction band of half-width D.
The second term introduces a scattering potential W, con-
trolled by the gate voltage V,,, and the tunneling amplitude V
couples the spin-degenerate dot level ¢, to the f;, orbital.
The dot Hamiltonian H,; in Eq. (2) can be written as

U U
Hd= 8d+ 5 ng— EndTndl’ (3)

which defines the antisymmetric component g,=¢g,+U/2 of
the dot energy, i.e., the component that changes sign under
the particle-hole transformation cdﬂ—c;, a— a}:.

The second term on the right-hand side of the Eq. (3), by
contrast, remains invariant under the same transformation.
For W=¢,=0, the Anderson Hamiltonian reduces to the sym-
metric Hamiltonian H,.

B. Conductance

A detailed derivation of an equation for the electrical con-
ductance G(T) at the temperature 7 in the embedded con-
figuration was presented in Ref. 22. In the side-coupled con-
figuration of Fig. I, the same analysis leads to an analogous
expression,

T 2
6(n)=¢,P7 s Ll @

mn

where G,=2¢%/h is the quantum conductance, Z is the par-
tition function, |m) (|n)) is an eigenstate of H,, with eigen-
value E,, and I'=mpV? is the dot-level width, due to its
coupling to the quantum wire.

C. Characteristic energy scales

The characteristic energies in the spectrum of the Hamil-
tonian (2) are depicted by Fig. 3 in Ref. 22. The dot Hamil-
tonian (3) introduces the excitation energy Ay=—g, (A,=U
+&,4) necessary to remove an electron from (add an electron
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to) the singly-occupied level. The conduction band Hamil-
tonian contributes only a trivial energy scale, the half-width
D, but its coupling to the dot adds two energies to the col-
lection: the level width I and the Kondo energy kzTg. The
scattering potential W reduces the former to??

mpV?

T .

A side effect of the coupling, emergent in the spectrum of
particle-hole asymmetric Hamiltonians, is the renormaliza-
tion Ag—Ag, or Ay—Aj, of the lowest dot-excitation
energy.>>> Apart from displacing the Kondo regime,?” this
energy shift has no practical consequence.

The Kondo regime is defined by the condition
max(kgT,I",) << Sf, where the dominant characteristic energy
is EX=min(D,A,A3). The n,=0 and n,=2 dot configura-
tions are then energetically inaccessible, and a dot magnetic
moment arises. As the temperature is reduced below the band
half-width D, the antiferromagnetic interaction between the
conduction electrons and the dot electron progressively
screens the moment. At low temperatures, the dot and con-
duction spins end up locked in a singlet. The singlet energy
defines the Kondo scale kpTk.

In the parametric space of the model Hamiltonian, two
mixed-valence regions enclose the Kondo regime. One of
them is defined by the inequality I, = Ay, the other, by T,
= A}. In the mixed-valence regime the dominant character-
istic energy is £7’=I",, and at high temperatures, the dot
moment is only partially formed. As the thermal energy is
reduced past IT',,, the dot level ¢, couples strongly to the
surrounding conduction electrons, and all physical properties
approach their low-temperature limit.

II1. UNIVERSAL MAPPING

The derivation of the universal expression mapping the
conductance in Eq. (4) to the universal function G5(T/T)
computed by Costi, Hewson, and Zlatic!®?® has been sum-
marized elsewhere.’! A detailed presentation of the analo-
gous derivation for the single-electron transistor being more-
over available,”? only recapitulation of the central result is

required,
G(l)_%=|:cs<l>_%:|cos(25). (6)
% 2 Ty 2

Here, & is the ground-state phase shift of the conduction
electrons in the wire.

To bring out the physical content of Eq. (6), we rewrite it
in the equivalent form

G(%{) = G5<T—7;(>cos2 o+ {QZ—GS<T—Z>}Sin2 o, (7)

which shows that the conductance is a linear combination of
the universal function G3(T/T) with its complement, G,/2
—G3(T/Tg). The universal function G5(7/Tk), a monotoni-
cally decreasing function of 7/ Ty that describes the conduc-
tance through a particle-hole symmetric quantum dot in the
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embedded configuration, is the dotlike function G, discussed
in the introduction, while its complement, a monotonically
increasing function of 7/Ty that describes the conductance
through a particle-hole symmetric quantum dot in the side-
couple configuration, is the wirelike function G,,. If the two
conduction paths were independent, the resultant conduc-
tance would be the sum G4(T/Tk)+G,,(T/Tx)=G,; the coef-
ficients cos? & and sin? 8 account for the interference be-
tween the two currents.

Special limits

Four limits of Eq. (6) merit special attention. For &
=/2, the mapping reduces to

G<1> =g2—GS(1> (6= m/2). (8a)
Tk Tk

This result can be derived from a diagrammatic expansion
for the symmetric Anderson Hamiltonian.!'?> With §=/2,
an equality approximately satisfied throughout the Kondo re-
gime for W=0,%? the conductances for the side-coupled and
the embedded geometries are complementary. While the con-
ductance through the single-electron transistor rises from
nearly zero to ballistic across the Kondo crossover, the con-
ductance through the 7-shaped device decays from ballistic
to nearly zero.

Physically, Eq. (8a) is readily understood. At high tem-
peratures, the flow of electrons through the quantum wire in
Fig. 1 is independent of the weak coupling to the quantum
dot. As the temperature is reduced, however, the formation of
the Kondo cloud gradually blocks the flow, and the conduc-
tance decays in the same way that the conductance through
an embedded quantum dot would rise.

In the second special limit, §=0, Eq. (6) yields

T T
G(T—K>=GS<T—K> (6=0). (8b)

To satisfy the Friedel sum rule,”’ the phase shift tends to
approach /2 at low temperatures; to make it vanish, a
strong wire potential W is required. The potential affects the
conductance in two different ways: it induces a charge that
blocks transport through the central region of the wire; at the
same time, it opens a bypass through the quantum dot. At
high temperatures, the bypass is ineffective because the Cou-
lomb blockade impedes conduction through the dot. Upon
cooling, the Kondo effect raises the blockade and the con-
ductance rises, lifted by the very same mechanism that al-
lows conduction in a single-electron transistor.!”-28:2

The third simple limit of Eq. (6) is G(T=0). At low tem-
peratures, the universal curve G° approaches G,. From Eq.
(6), it follows that

G(I)=G,cos? 8 (T<Ty), (8¢)

a result most easily obtained from Langreth’s relation?’ be-
tween the low-energy dot-level spectral density and the
ground-state phase shift.?!

Finally, at high temperatures, the universal function G°
vanishes, and Eq. (6) yields
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G(T)=G,sin’> 6 (T>Ty), (8d)

Analogous to Eq. (8c), this result also stems from Langreth’s
expression. In the temperature range kzTx <<kgT << Sf within
the Kondo regime, the Anderson Hamiltonian is in the local-
moment regime, equivalent to a phase-shifted conduction
band weakly interacting with the dot moment.>* If the inter-
action is neglected, the Hamiltonian is equivalent to a free
conduction band, and Langreth’s relation is applicable.?!->?
The phase shift &;,, of the wire electrons can be obtained
from the Friedel sum rule, which associates a phase-shift
difference 7r/2 with the formation of the Kondo cloud, and
hence yields &;,,=J—m/2. Substitution of ;) for & in Eq.
(8¢) leads to Eq. (8d).

IV. NUMERICAL RESULTS

We are now ready to discuss the NRG results and com-
pare them with Eq. (6). Details of the numerical procedure
yielding the ground-state phase shift  and the temperature-
dependent conductance G(7T), and a tabulation of the param-
eters controlling the accuracy of the computation are found
in one of our earlier papers.?? Here, to follow the structure of
that report, we discuss two Coulomb repulsions: U=5D, in
Sec. IV A, and U=0.05D, in Sec. IV B.

Although the latter choice can be more faithful to experi-
mental conditions, the former is more illustrative. With U
>D, the inequality kzgT<<min D, |g,|,e,+ U, which defines
the thermal dimension of the Kondo regime, reduces to
kgT<<D. With U=5D, the domain of Eq. (6) will cover all
but a small portion of our log(kzT/D) axes. For this reason,
we pay closer attention to the larger Coulomb repulsion.

A. Results for U>D
1. Phase shifts

Figure 2 shows the ground-state phase shifts extracted
from the low-energy spectrum of the Hamiltonian H, for
antisymmetric dot energies &,=g,+U/2 for |g,|<3.5D. It
follows from the Friedel sum rule that the ordinate 26/ is
the extra charge n,, at the wire. That accumulation is the sum
of two charges: that induced by the wire potential W; and the
Kondo screening charge, which is equal to the dot occupa-
tion ng.

With W=0, the two occupations are equal and bound be-
tween n,,=n,=0 and n,=n,;=2. If, in addition, &,=0, H,
reduces to the symmetric Hamiltonian; the dot occupation is
unitary, and d=mr/2. If, on the other hand, e,#0, then a
particle-hole transformation, which reverses the sign of g,
transmutes n, into 2—n,; and hence, as illustrated by the
circles in Fig. 2, changes the sign of 6— /2. The solid line
through the circles marks the Kondo regime, throughout
which 6= 7r/2. Comparison with the solid lines through the
squares and triangles shows that the positive gate potential
applied to the wires displaces the Kondo regime to higher
dot energies.

The negative charge induced by the potential pushes
down the entire curve. For £,>0, the wire charge n,, now
becomes negative. While the circles cross the d=m/2 line at
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FIG. 2. (Color online) Phase shifts as functions of the dot-level
energy for the indicated wire potentials W. The triangles, squares,
and circles were obtained from the low-energy fixed-point Hamil-
tonian for U=5D and I',,=0.15D. For each curve, a solid line
guides the eyes through the data points in the pertinent Kondo re-
gime. The horizontal line labeled 6=/2 identifies the dot energies
at which the right-hand side of Eq. (8c) vanishes. The vertical ar-
rows pointing to the top axis indicate the dot energies at which the
temperature-dependent conductance is shown in Figs. 6-9.

a saddle point, the slope of the curves through the squares
and triangles is markedly negative. Thus, in contrast with the
circles, only in narrow ranges of dot energies do the squares
and triangles dwell near 6=m/2 or 6=0. As the data also
show, except for W= 0, the range in which =0 (5= 7/2) is
pinned to the vicinity of the mixed-valence region g,~ U/2
(e,=-U/2).

Combined with Eq. (6), the information in Fig. 2 deter-
mines the thermal dependence of the conductance through
the device in Fig. 1. Preliminary to comparing quantitatively
that equality with the NRG results for G(7), in Secs.
IV A 1-IV A 4 we present bird’s-eye views of the conduc-
tance as a function of the temperature and dot-level energy.

2. Conductance for W=0

Figure 3 combines 71 G(T) curves calculated for W=0,
U=5D, I',,=0.15D, and dot energies in the range focused in
Fig. 2. The inset shows a reversed-perspective view of the
same plot. From our discussion of Egs. (8), the salient fea-
tures of the landscape are readily recognized. The central
portion of the plot encompasses the Kondo regime. Here, as
the circles in Fig. 2 show, the ground-state phase shift is
close to 7/2. At high temperatures, Eq. (8d) yields the nearly
ballistic conductance depicted by the hoodlike central pla-
teau in the main plot and inset. At low temperatures, Eq. (8c)
brings the conductance down to nearly zero; the resulting
Kondo valley is visible in the inset. We defer to Sec. IV A5
the quantitative discussion of the crossover between the pla-
teau and the valley. Here, we note that the Kondo tempera-
ture rises with |g,|. For |g,|=U/2, i.., for Ay=—g,<T or
A,=¢,+U=T, the Kondo temperature becomes comparable
with T, an indication that the Hamiltonian has transposed
the limits of the Kondo domain to enter the mixed-valence
regime.
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FIG. 3. (Color online) Conductance as a function of the tem-
perature and dot-level energy for W=0, U=5D, and I',,=0.15D.
The inset shows the same plot from the opposite viewpoint, i.e., so
that, instead of rising, the temperature decays toward the viewer.
The invariance of G(T) under particle-hole transformations makes
the plot symmetric with respect to the e,=—U/2 plane. At high
temperatures in the Kondo regime, the main plot offers an unob-
structed view of the high-temperature plateau, while the Kondo
valley at low temperatures can only be seen in the inset. The two
ridges adjacent to the Kondo regime, distinctively marked by the
bell-shaped resonances at the frontal plane of the main plot belong
to the mixed-valence regime. The ballistic flaps at the £;,=—6D and
g,4=D ends of the landscape correspond to the dot occupations n,
=2 and n,=0, respectively.

At high temperatures, the mixed-valence regime is iden-
tified by the two antiresonances bringing the conductance to
G,/2 on the frontal plane of the main plot, or the rear plane
of the inset. As the temperature is reduced, the conductance
descends into the Kondo plateau. This decay can still be
mapped onto the universal function G5(T/Ty), as Sec.
IV A5 will show. The crossover temperature is so high,
however, that Eq. (6) fits quantitatively only the low-
temperature tail of the numerical results.

Beyond the mixed-valence regime, as |e,|> grows past
U/2, the dot occupation approaches an even integer, n;=0 or
ng=2, the coupling to the quantum wire becomes ineffective,
and the electrons flow ballistically across the wire.

3. Conductance for weak scattering potentials

Even moderate gate potentials applied to the wire change
qualitatively the conductance landscape. Figure 4 shows
plots analogous to Fig. 3, calculated for the same Coulomb
repulsion U=5D and effective dot-level width I",,=0.15D,
for three weak potentials: (a) pW=0.1D; (b) pW=0.2D; and
(c) pW=0.3D. Compared to the symmetric landscape in Fig.
3, the new plots show distinctions that evolve rapidly under
the gate potential.
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FIG. 4. (Color online) Conductance as a function of the tem-
perature and dot-level energy for U=5D, I',,=0.15D, and the indi-
cated wire potentials W. The wire potential reduces the conductance
at the Coulomb-blockade plateau and raises the conductance in the
Kondo valley. For pW=0.3, in the Kondo regime the landscape is
nearly flat. The wire potential also makes the transitions into the
mixed-valence regimes markedly asymmetric: at fixed temperature
below kzT=1073D, the conductance vanishes at the A;=0 reso-
nance and reaches the ballistic limit at the Aj=0 resonance. At low
temperatures, as a result, the conductance acquires the askew profile
distinctive of Kondo antiresonances.

The Kondo-valley conductance rises with pW, while the
high-temperature plateau diminishes. For the highest poten-
tial shown, pW=0.3, the conductance in the Kondo regime is
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nearly uniform. Outside the Kondo regime, in the even-n,
regions, the charge 24,/ 7 induced by the wire potential low-
ers the ground-state phase shift to -8, (7-4,) for n;=0
(ny=2). The right-hand side of Eq. (8¢) is no longer ballistic:
G(T=0)=G, cos’ 8,. In the mixed-valence regime, the tran-
sition from the Kondo regime to the n;=0 domain is mark-
edly different from the transition to the n;=2 domain. The
former encompasses the narrow =0 dot-energy range in
Fig. 2, in which the right-hand side of Eq. (8c) yields G(T
=0)=G,, while the latter traverses the equally narrow &
=1r/2 range, for which Eq. (8¢) yields G(T=0)=0. An in-
sulating gully develops in the conductance landscape, pinned
near ,=—U, while a ballistic ridge arises near the &,=0
plane. Plotted at fixed temperature kz7T<<T',, against the dot
energy, the conductance displays the resonance-
antiresonance pair that defines a Fano profile.’® As evidenced
by Fig. 4(c), this fiducial mark of interference between cur-
rents flowing along parallel paths becomes most pronounced
for intermediate wire potentials.

A brief glance at Fig. 1 identifies the interfering conduc-
tion paths. The path indicated by the white arrows may be
obstructed, by charge piled up in the central segment of the
wire. The second conduction path runs through the quantum
dot; to bypass the obstructed wire, it must avoid the Wannier
orbital f,. At first sight, given that Eq. (2) couples the quan-
tum dot to f;, this may seem impossible, and in fact, with
W=0, it is. The wire potential nonetheless spreads the cou-
pling over wire states beyond the central Wannier orbital.

To be more specific, we let V— 0 and consider the result-
ing wire Hamiltonian,

w
H, =2, ecici+ => ciep. 9)
k Nk,k’

The diagonalization of this quadratic form yields

Hw:ESKg};g{” (10)
4

where

g0= D apuch, (11)
3

with coefficients ay that depend on W, and the eigenvalues
g, are phase shifted with respect to the €. In the vicinity of
the Fermi level, in particular, the phase shifts ,, are uniform,

tan 8, =— wpW. (12)
In analogy with Eq. (1), we can therefore define
1
¢ = W - 8- (13)

A straightforward calculation shows that
{#).foy=cos 6,.2% For W=0, in particular, ¢y=F. It is also
easy to check that the ground-state occupation n, of the ¢,
orbital is 1+246,,/, so that as required by the Friedel sum
rule, the gate potential brings in an extra charge 26,/ 7.

The operator ¢, plays the role that belonged to f, when
W=0. In the Kondo regime, the antiferromagnetic interaction
between the dot moment and the moment of the electrons
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occupying the ¢, orbital is now responsible for the Kondo
crossover,’>? and at low temperatures, the ¢, occupation,
equal to the charge in the Kondo cloud added to the charge
induced by the wire potential, obstructs the transport along
the white arrows in Fig. 1. For W# 0, however, the overlap
sin §,, between f, and the wire states orthogonal to ¢, offers
the dot bypass, through which the current runs to interfere
with the flow across ¢, and generate the askew profile most
visible on the kzT=10"'°D (rear) plane in Fig. 4(c).

The ratio between the overlaps (i) sin &,, of f; with the
states orthogonal to ¢,; and (ii) cos 8, of f, with ¢y, i.e., the
ratio between the amplitudes for tunneling (i) through the dot
and (ii) across the ¢, orbital, defines the effective Fano pa-
rameter

Gefy = tan 6, =— mpW. (14)

For W=0, the right-hand side vanishes. The resulting con-
ductance curve, stamped on the kzT=10"1"D plane in Fig. 3,
exhibits the symmetry of the g=0 Fano profile.’* For pW
=0.3, by contrast, g.r~-1, and the conductance profile in
Fig. 4(c) is close to the maximum Fano asymmetry.

4. Conductance for strong scattering potentials

Under stronger gate potentials, while the amplitude for
conduction along the white arrows in Fig. 1 diminishes, the
dot bypass becomes more effective. The absolute value of
the right-hand side of Eq. (14) grows, and the conductance
profile at low temperatures gradually acquires the symmetry
of the large-g Fano profile.

Illustrative landscapes are displayed in Figs. 5(a)-5(c),
computed for pW=0.4, 0.6, and 1.0, respectively, and U
=5D and I',,=0.15D. The dominant features of Fig. 4 reap-
pear in the three plots. In particular, the ballistic ridge and
the insulating gully are still salient in the mixed-valence re-
gime. Sharp as they are in (a), and (b), the resonance and the
antiresonance become dull in Fig. 5(c) because, as shown by
the triangles in Fig. 2, the wire potential pushes &(g,) so far
down that the curve cuts the d=m/2 and 6=0 horizontal
lines with gentler slopes.

In the Kondo regime, while the high-temperature conduc-
tance falls, the low-temperature conductances rises steadily
with pW. In the end, with pW=1, the conductance is nearly
ballistic in the low-temperature Kondo plateau, while at high
temperatures the Coulomb blockade (the charge induced by
the wire potential) impedes transport through the dot
(through the wire) and reduces the conductance to nearly
Zero.

The trend in Fig. 5 indicates that, in the large pW limit,
the conductance landscape is complementary to the plot in
Fig. 3, i.e., Gy_oo(T) + Gyo(T)=G,. In view of Eq. (8a), we
expect Gy _.(T) to reproduce the thermal dependence of the
conductance for a single-electron transistor.?> The compari-
son of Fig. 5 with Fig. 7 in Ref. 22, which describes a single-
electron transistor with the same model parameters, confirms
that, with pW— o0, the conductances in the side-coupled and
the embedded configurations are identical. In the weak po-
tential limit, on the other hand, while the conductance in the
embedded configuration retains the Kondo-plateau topogra-
phy in Fig. 5(c), in the side-coupled geometry the pattern is
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FIG. 5. (Color online) Conductance as a function of the tem-
perature and dot-level energy for U=5D, I',,=0.15D, and the indi-
cated wire potentials W. In the Kondo regime, i.e., between the
A3=0 and the Aj=0 resonances, as pW grows, the Coulomb-
blockade region evolves into a valley, while at low temperatures the
conductance rises toward a ballistic Kondo plateau. Outside the
Kondo regime, the conductance approaches zero. Overall, the
large-pW landscape reproduces the temperature and dot-level de-
pendence of the conductance through a single-electron transistor.

reversed to the Kondo-valley landscape displayed in Fig. 3.

5. Thermal dependence of the conductance

This section compares the NRG results for the tempera-
ture dependence of the conductance with the mapping (6).

PHYSICAL REVIEW B 80, 235318 (2009)

We fix the parameters U=5D and I',,=0.15D, and consider
seven gate potentials applied to the wire: pW=0, 0.1, 0.2,
0.3, 0.4, 0.6, and 1.0. To sample the dot-energy dependence
of the data, four plots will be discussed, corresponding to the
four dot energies indexed by the vertical arrows in Fig. 2.
For each run, the Kondo temperature resulting from the defi-
nition G(Tx)=G,/2 and the ground-state phase shift
calculated?? from the low-energy eigenvalues of H, appear
in Table I.

Figure 6 shows the thermal dependence of the conduc-
tance for £,=0 and seven gate potentials pW. As the poten-
tial grows from pW=0 to pW=1 and the ground-state phase
shift, described by the circles in Fig. 2, decreases from /2
to nearly zero, the conductance G(T) evolves from mono-
tonically increasing to monotonically decreasing. In all
cases, the model Hamiltonian lying well within the Kondo
regime, the agreement with the solid curves representing Eq.
(6) is excellent.

Figure 7 displays temperature-dependent conductances
for £;=—3.4D. The other model parameters are those in Fig.
6. As Table I shows, the dot-Hamiltonian asymmetry makes
each ground-state phase shift somewhat larger than the cor-
responding & in Fig. 6. With the exception of the open
circles, which vanish (reach the quantum limit) at low (high)
temperatures in Fig. 6 and can only move up (down) in re-
sponse to the particle-hole asymmetry, Eq. (8¢) [Eq. (8d)]
pushes down (up) the low (high) temperature conductances.
The Kondo temperatures are now spread over a wider ranger.
Apart from such minor changes, however, Figs. 6 and 7 dis-
play the same picture. In particular, all Hamiltonians and
temperatures being in the Kondo regime, the agreement with
Eq. (6) is flawless.

As indicated by the solid lines in Fig. 2, for pW=0, the
borders of the Kondo regime lie near |e,|=U/2-T. With
e,;=—4D, i.e., ¢,=—1.5D, our model Hamiltonian is still
within the Kondo regime. As pW grows, however, the Kondo
regime is shifted toward higher ;. The Kondo regime is
centered at £,=0. As pW grows, the Kondo regime is uni-
formly shifted toward higher dot energies. It results that the
open and filled triangles in Fig. 8, which represent conduc-
tances for pW=0.8 and 1, respectively, correspond to Hamil-
tonians in the mixed-valence regime. While the other curves,
computed for smaller pW’s and hence still within or nearly
within the Kondo regime, agree with Eq. (6), the deviations
separating the triangles from the solid lines at high tempera-
tures, kzT= 102D, are substantial. The discrepancies are re-
minders that, in the mixed-valence regime, the dominant
characteristic energy is £.'=1I",,, which restricts the domain
of Eq. (6) to kzT<I',,=0.15D. Our numerical study of the
embedded configuration reported similar deviations.?> Given
that the conductance curves cross the G=G,/2 horizontal at
relatively high temperatures, in the nonuniversal thermal
range kzT=<T,, it would be inappropriate to extract Kondo
temperatures from the identification G(T/Tx)=G,/2; each of
the two Tx’s marked with asterisks in Table I was therefore
adjusted to make the corresponding solid line run through a
triangle near G=0.7G,.

Since the wire potential displaces the Kondo regime to
higher dot energies, for €;— 0 we expect the pW=0 Hamil-
tonian to leave the Kondo regime before the pW >0 Hamil-
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TABLE I. Phase shifts and Kondo temperatures for the 32 NRG runs depicted in Figs. 6-9. The ground-
state phase shifts ¢ come from the low-energy spectrum of the model Hamiltonian, and the Kondo tempera-
tures, from the definition G(T=Tx)=G,/2. The Kondo temperature marked with an asterisk belongs to a
Hamiltonian in the mixed-valence regime and, as explained in the text, had to be obtained by matching the
solid lines to conductances computed at temperatures below Tk.

Figure Symbol pW Sl kpTg! D Symbol pW ol kgTx!/ D
6 O 0.00 0.50 8.1x1077 () 0.10 0.40 8.6%x 1077
6 O 0.20 0.32 1.0x 107° [ | 0.30 0.26 1.3x107°
6 O 0.40 0.22 1.6 107° * 0.60 0.16 2.5%107°
6 A 0.80 0.13 3.8%x107° A 1.00 0.11 6.0%x107°
7 O 0.00 0.51 4.4%10°° ) 0.10 0.41 5.9%x10°°
7 O 0.20 0.33 8.9%107° [ | 0.30 0.27 1.4%107°
7 O 0.40 0.23 2.2x107 ¢ 0.60 0.17 5.7x1073
7 A 0.80 0.15 1.4x10™* A 1.00 0.13 3.6x107*
8 O 0.00 0.52 8.9%x 107 ® 0.10 0.43 1.4x107*
8 O 0.20 0.35 25X 107 [ ] 0.30 0.29 45% 107
8 O 0.40 0.25 9.6x 107 ¢ 0.60 0.22 3.0x 1073
8 A 0.80 0.22 1.0X 1072 A 1.00 0.25 1.2X 1072
9 O 0.00 0.42 7.6x1073 () 0.10 0.34 45%107°
9 O 0.20 0.27 2.7x1073 [ | 0.30 0.21 2.0x1073
9 O 0.40 0.17 141073 ¢ 0.60 0.12 6.6X 107
9 A 0.80 0.09 3.5x 107 A 1.00 0.08 1.9x 1074

tonians. Accordingly, Fig. 9 contrasts triangles and squares
very well fitted by Eq. (6) with circles and diamonds that
depart significantly from the solid lines representing the uni-
versal mapping for kzT>3 X 1072D.

The ground-state phase shift & decreases with g, Thus,
while the phase shifts that Table I associates with each pW in
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FIG. 6. (Color online) Temperature dependence of the conduc-
tance for U=5D, I',,=0.15D, g,=-2.5D, and the displayed wire
potentials W. The symbols depict results of NRG runs. The solid
curves through them represent Eq. (6) with & computed from the
low-energy eigenvalues of the model Hamiltonian, and T, from the
definition G(T=Tx)=G,/2. For W=0, the model Hamiltonian re-
duces to the symmetric Hamiltonian, and the conductance is
complementary to the universal conductance curve, G(T/Tx)=G,
—G5(T/T). For larger wire potentials, the ground-state phase shift
grows, but since the model Hamiltonian remains in the Kondo re-
gime, the agreement with the solid lines is excellent.

Fig. 7 and 8 exceed the phase shift for the same pW in Fig. 6,
the phase shift for each wire potential in Fig. 9 is smaller
than the corresponding phase shift in Fig. 8. In compliance
with Eq. (8c), each low-temperature conductance in Fig. 9 is
larger than the corresponding conductance in Fig. 8. This
comparison cannot be extended to the high-temperature re-
gime because the Kondo temperatures derived from the filled
triangles and diamonds in Figs. 8 and 9 are so high that even
the right extreme of the temperature axis violates the condi-
tion 7> Ty in Eq. (8d).

T llllm' TTTImr T I

10-8 1076 10~* kgT/D 1072

FIG. 7. (Color online) Analogous to Fig. 6, with e;,=—3.4D. The
particle-hole asymmetry, here more pronounced than in Fig. 6, re-
duces the conductance at high temperatures and enhances it at low
temperatures. Since the model Hamiltonian for each W lies in the
Kondo regime, the agreement with Eq. (6) is again excellent.
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FIG. 8. (Color online) Analogous to Figs. 6 and 7, for g,=
—4.0D. Four of the curves, those with pW=0.4, belong to model
Hamiltonians in the mixed-valence regime, which restricts Eq. (6)
to the temperature range kzT<T,,. For kzT>1072D, the diamonds
and triangles therefore show disagreement with the solid lines. The
disagreement grows with W because the wire gate potential pushes
the Hamiltonian away from the Kondo regime.

B. Results for U<D

We will now present conductances calculated with U
=0.05D, a parameter 100 times smaller than the Coulomb
repulsion in Sec. IV A. The reduction pushes the Kondo re-
gime to lower temperatures to make room for a new domain
at thermal energies kz7T=0.05D, in which the n,;,=0 and n,
=2 dot occupations are thermally accessible. The conduc-
tance being unchanged in the Kondo regime, the following
discussion will focus on the modifications at higher tempera-
tures.

1. Conductance for W=0

Figure 10, analogous to Fig. 3, shows the conductance as
a function of the temperature and of the dot energy for dot-

LO o= T T T I T I T I T T T T

0.6 p === 0.3

0.4

0.1

02

4 I TR T I R
10-8 1076 10~* kgT/D 1072

FIG. 9. (Color online) Analogous to Figs. 6-8, for £,=0.4D.
With e,+U/2 >0, the (positive) wire potential tends to dampen the
effects of particle-hole asymmetry. For pW=0.3D, the model
Hamiltonian now lies in the mixed-valence regime, and the calcu-
lated conductances deviate significantly from the solid lines in the
temperature range kzT>1072D.
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FIG. 10. (Color online) Conductance as a function of the tem-
perature and dot-level energy for W=0, U=0.05D, and ['=2
X 1073D. The inset shows the same plot from the opposite view-
point, so that the temperature decays toward the viewer, instead of
rising. The invariance of the Hamiltonian under a particle-hole
transformation makes the plot symmetric with respect to the g,
+U/2=0 plane. At high temperatures, with k37> U, all occupations
of the dot orbital are thermally accessible, and conduction through
the wire is ballistic. As the temperature is lowered in the Kondo
(mixed-valence) regime, the conductance drops gradually (sharply)
to zero, because the coupling to the quantum dot obstructs conduc-
tion through the wire.

level width '=2X 107D and no wire gate potential. At high
temperatures, all dot occupations are thermally accessible,
and the model Hamiltonian is in the free dot-orbital regime.?*
In the absence of Kondo screening, the dot is effectively
decoupled from the wire, through which currents can flow
ballistically under external biases. The zero-bias conductance
is therefore unitary.

As the temperature is lowered, the more energetic dot
occupations n, are frozen out. Since the dot energies for n,
=0, 1, and 2 are 0, &, and 2g,4+ U, respectively, depending
on the dot energy the model Hamiltonian will be driven to a
domain in which the dot occupation is close to 0 or 2 (the
nonmagnetic regime), close to 1 (the Kondo regime), or a
fractional number between 0 and 1 or between 1 and 2 (the
mixed-valence regime).

The crossover to any of these from the free-orbital regime
occurs at thermal energies approximately equal to dot-charge
excitation energies. The crossover from the free-orbital re-
gime to the Kondo regime, for instance, takes place at tem-
peratures kg7 < U, approximately equal to the charge-
excitation energies Ay=|g,|, from the n,=1 to the n,=0 dot
configurations, and A,=¢g,+U, from the n,=1 to the n ;=2
configurations. The crossover coincides, in other words, with
the charge-excitation resonances that enhance the dot-level
spectral density and hence the coupling between the dot and
the wire.?! Since the coupling obstructs the flow of electrons
through the wire, the conductance dips at the crossover. The
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trough running parallel to the &, axis at kzT~1X 1072 in
Fig. 10 thus marks the crossover from the free-orbital to the
nonmagnetic, mixed-valence, or Kondo regimes. Once the
Hamiltonian is over the trough on its journey toward 7=0,
only the temperature shift distinguishes the landscape in Fig.
10 from the plot in Fig. 3.

2. Conductance for weak scattering potentials

Compare next Fig. 11, which shows the conductance as a
function of the temperature and dot energy for I',=2
X 107D and three small wire potentials, with Fig. 4. Again,
the differences direct our attention to the high-temperature
end of the plot.

Even though the dot is decoupled from the conduction
band at high temperatures, the wire gate potential reduces the
conductance, because the charge induced by the potential on
the wire partially blocks the flow of electrons. The induced
charge being 26,,/ , we expect the conduction to be a func-
tion of 8. In fact, the conductance of one-dimensional elec-
trons phase shifted by &, is G=G, cos® §,,%% an expression
that can be compared with the conductance in the Kondo
regime for 7> Ty: if e;,=—U/2, the ground-state phase shift
is 0=m/2+ 9,,, and so the conductance on the right-hand side
of Eq. (8d) is G, cos® &.

On the symmetric plane e,=-U/2, therefore, in the free-
orbital regime and at the highest temperatures in the Kondo
regime, the conductance must be the same. For small wire
potentials, as in Fig. 10, the two regimes are separated by a
trough. As the potential grows, the trough progressively
evolves into a ridge, following pari passu the emergence of a
Kondo plateau out of the Kondo valley at low temperatures.
The latter transformation is a feature of the Kondo regime;
we have already seen it in Fig. 4 and discussed it in Sec.
IV A3.

Closer inspection of the temperature range kz7>0.01D
in Fig. 11(c) shows that the trough and the ridge coexist. The
former is visible in the left-hand half of the plot (g,
<-U/2), the latter, in the right-hand half (¢,>-U/2). The
coexistence identifies interference between the currents
through the dot and the wire. This is the same phenomenon
discussed in Sec IV A 3, which here likewise originates the
antiresonance profile on the kzT=1X107'°D plane, at the
rear. At high temperatures the interference is much less pro-
nounced, because the maxima of the dot spectral density at
the charge-excitation energies e=A, and e=A,, which ac-
count for the ridge and the trough, are much weaker than the
maximum of the spectral density at the Kondo resonance.?-3

3. Conductance for strong scattering potentials

Figure 12 shows the conductance as a function of the
temperature and dot energy for I',,=2 X 107D and three wire
gate potentials, pW=0.4, 0.6, and 1. Under the stronger po-
tentials, a fully developed ridge marks the crossover between
the free-orbital and the three lower-temperature regimes. Be-
hind the ridge, i.e., for kzgT<<U, the three landscapes are
similar to the ones in Fig. 5.

Sec. IV A 4 showed that, in the large wire-potential limit,
the conductance for the side-coupled geometry approaches

PHYSICAL REVIEW B 80, 235318 (2009)
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FIG. 11. (Color online) Conductance as a function of the tem-
perature and dot-level energy for U=0.05D, I',,=2 X 107D, and the
displayed wire gate potentials W. At high temperatures, as in Fig.
10, the wire is effectively decoupled from the quantum dot; only the
wire potential obstructs conduction. As the temperature is decreased
for fixed &4, a trough at kg7~ U marks the crossover to the Kondo,
mixed-valence, or even-n, regimes. In these three regimes, the land-
scapes (a), (b), and (c) reproduce the dominant features of Figs.
4(a)-4(c), respectively.

the conductance for the embedded geometry with W=0. We
therefore expect the sequence in Fig. 12 to approach the
conduction landscape for the Anderson model of a single-
electron transistor (SET) (Refs. 17 and 33) for the same level
width and no wire gate potential, i.e., to approach the plot in
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FIG. 12. (Color online) Conductance as a function of the tem-
perature and dot-level energy for U=0.05D, I',,=2 X 103D, and the
displayed wire gate potentials W. At high temperatures, as in Fig.
10, the wire is effectively decoupled from the quantum dot, and the
conductance depends only on the wire potential. In the temperature
range kpT< U, a ridge that rises with the wire potential marks the
crossover from the free-orbital high-temperature domain into the
Kondo, mixed-valence, or even-n; regimes. In these lower-
temperature regimes, the landscapes (a), (b), and (c) are similar to
the ones in Figs. 5(a)-5(c), respectively.

Fig. 13(a) of Ref. 22. Compared to that plot, Fig. 12(c) con-
firms that the conductances computed for pW=1 are very
close to the SET conductances. In particular, the ridge at high
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FIG. 13. (Color online) Temperature dependence of the conduc-
tance for U=0.05D, I',,=2 X 1073D, £,=-0.03D, and the seven dis-
played wire potentials W. The symbols result from NRG runs. The
solid lines through them represent Eq. (6), with Kondo temperature
Tk such that G(Tx)=G,/2 and phase shift § extracted from the
low-energy spectrum of the model Hamiltonian. The arrows above
the top horizontal axis stake out the Kondo regime, in which the
symbols stick to the solid lines, and its crossover to the free-orbital
regime, in which Eq. (6) overestimates the conductance.

temperatures and the flat Kondo plateau at 7<< Ty are signa-
tures of the SET landscape for U<D.

4. Thermal dependence of the conductance

Figure 13 shows the cut of each landscape in Figs. 11-13
along the £,=-0.030D plane and compares it with Eq. (6).
At high temperatures, the two charge-excitation energies
Ay=0.03D and A,=0.02 control the renormalization-group
flow of the model Hamiltonian. For kz7T> A, the Hamil-
tonian is in the free-orbital regime, and all dot occupations
are thermally accessible. In the crossover range A,=<kzT
=<A,, marked by the two-headed arrow above the top hori-
zontal axis in the illustration, the two charge-excitation reso-
nances modulate the conductance. Finally, as k3T becomes
small in comparison with A,, the Hamiltonian enters the
Kondo regime, indicated by the single-headed horizontal ar-
row at the top.

In the free-orbital regime, the conductance is approxi-
mately constant, G=G, cos’ §,,. If the wire potential is weak
(strong), the conductance initially dips (rises) as the tempera-
ture drops into the crossover region, a change that originates
the troughs (ridges) in Figs. 10, 11(a), and 11(b) [Figs. 11(c)
and 12]. In the crossover, consequently, the conductance de-
parts substantially from Eq. (6). As the temperature drops
further and enters the Kondo regime, however, the symbols
exhibit excellent agreement with Eq. (6).

The high-temperature troughs (ridges) in Figs. 10, 11(a),
and 11(b) (Fig. 12) correspond to the dips (mounds) around
kgT=1X1072D drawn by the open and filled circles and
squares (filled diamonds and triangles) in Fig. 13. Below
kgT=1X107*D, in the Kondo regime, the agreement be-
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tween the symbols and the solid lines representing Eq. (6) is
excellent.

V. COMPARISON WITH EXPERIMENT

A number of experimental studies of transport in
T-shaped devices are found in the literature, with which the
results reported in Figs. 3-5 can be compared. Figure 1(c) in
Ref. 13, which show low-temperature conductance profiles
for various level widths, exhibits valleys, plateaus, reso-
nances, and antiresonances—the features found in the low-
temperature profiles delineated on the kz7=1071"D planes in
Figs. 3-5. Other publications offer additional examples.!>!”

Particularly illustrative is the experimental demonstration
in Ref. 19, that a gate potential applied to a quantum wire
side-coupled to a quantum dot controls the amplitude for
transport along the wire relative to that through the dot. Fig-
ure 5 in that publication documents the evolution of a low-
temperature Kondo valley, characteristic of conduction
through the wire, into a low-temperature Kondo plateau,
characteristic of conduction through the dot, under a steadily
increasing gate potential applied to the wire. Viewed in from
Fig. 3 to Fig. 5(c), the landscapes in Sec. IV display the same
evolution. The universal mapping (6) qualitatively describes
the experimental conductance profiles.

What is more important, the mapping describes quantita-
tively the thermal dependence of measured conductances.
For an illustration, see Fig. 3 in Ref. 21, which fits the
temperature-dependence conductances resulting from two
gate potentials applied by Sato et al.'> to a T-shaped device.
A background current being detected, three parameters were
involved in the fit to the first conductance curve: the back-
ground conductance, the phase shift, and the Kondo tempera-
ture Tk. The same first two parameters and a different Kondo
temperature then fitted the second curve. In each case, within
the dispersion of the experimental data, optimum agreement
resulted.

VI. CONCLUSIONS

Equation (6) offers a unifying view of electrical conduc-
tion through a quantum wire side coupled to a quantum dot.
Valid over the entire Kondo regime, it captures with error
O(kgT/ D) the conductance crossover from local-moment re-
gime T> Ty, equivalent to a conduction band weakly inter-
acting with the dot magnetic moment, to the low-temperature
regime 7T<<Ty, in which the dot electron and the conduction
electrons around it lock into a singlet making the spectrum of
the model Hamiltonian equivalent to a phase-shifted conduc-
tion band. The thermal dependence of the conductance is
controlled by the phase shift. For = 7r/2, an approximate
equality enforced by the Friedel sum rule in the absence of a
wire potential, the formation of the Kondo cloud lowers the
conductance from nearly ballistic to nearly zero. A (positive)
gate potential applied to the wire induces electric charge that
reduces the ground-state phase shift. As pW pushes & past
/4, the conductance curve becomes flat and then reverses
the pattern displayed in Fig. 3: for large pW [Fig. 5(c)], the
T-shaped device becomes indistinguishable from a single-
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electron transistor.?2 For small pW, by contrast, the land-
scapes are complementary because the conductance through
the single-electron transistor is virtually insensitive to the
gate potential applied to the wire.?

The Friedel sum rule explains the incongruent responses
of the two devices to the external potential. In the embedded
configuration of the single-electron transistor, the dot charge
n, controls the conductance. Were it not for the reduction
I'—T,, and the shifts Ag—Ag, A,—AJ that it imposes on
the dot-level width and resonance energies, respectively, the
wire potential would not affect n,. As it follows, the wire
potential changes the Kondo temperature, but has otherwise
no effect upon the thermal dependence of the conductance.
Mathematically, this implicit dependence is expressed by the
Friedel sum rule n,=2(5-4,,)/ , which relates the dot occu-
pation to the extra charge in the Kondo droplet, i.e., the wire
charge measured from the charge induced by the wire poten-
tial. In accord with this notion, the mapping between the
conductance and the universal function G5(T/Tk) is param-
etrized by the phase-shift difference - 6, and hence insen-
sitive to the wire potential.??

By contrast, the wire potential affects the conductance for
the device in Fig. 1 in two direct ways. First, the total charge
in the ¢, orbital, i.e., the charge induced by the wire poten-
tial plus, at low temperatures, the charge in the Kondo drop-
let, obstructs the transport of charge through the central por-
tion of the wire. Second, the potential couples c, to states
orthogonal to ¢, and thus opens a conduction path through
the quantum dot. For very (strong) weak potentials, the path
through ¢, (c,) is dominant; the landscape in Fig. 3 [Fig.
5(c)] is thus complementary (very similar) to the landscape
for a single-electron transistor.??> For intermediate
potentials—see, e.g., Fig. 4(c)—the interference between the
currents along the two paths makes the landscape markedly
asymmetric in the mixed-valence region, and the availability
of two alternate conduction paths, one efficient at low tem-
peratures, the other efficient at high temperatures, makes the
landscape remarkably flat in the Kondo regime. According to
the Friedel sum rule, the wire charge is 26/ 7. Much as the
dot charge n,=2(6-6,,)/ m, which controls conduction in the
embedded configuration, parametrizes the mapping to the
conductance through the single-electron transistor,” the wire
charge 26/ controls conduction in the side-coupled con-
figuration and parametrizes the mapping (6). While the de-
pendence on the dot charge practically shields the conduc-
tance for the single-electron transistor from gate potentials
applied to the wire, the dependence on the wire charge
makes the conductance for the 7-shaped device remarkably
sensitive to such potentials.

The practical value of universality has been demonstrated
in both experimental arrangements. In the embedded con-
figuration, early in the history of such devices, the universal
function G3(T/Ty) guided the interpretation of conductance
data for single-electron transistors.>> In the side-coupled ar-
rangement, Eq. (6) was shown to fit conductance curves gen-
erated in the laboratory!>!'® accurately enough to determine
the Kondo temperature and ground-state phase shift within
deviations set by the dispersion of the experimental data.

Neither the universal mapping (6), nor the corresponding
expression for the embedded configuration’? determine ex-
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plicitly any of the model parameters, let alone the physical
constants emulated by the model Hamiltonian. They do offer
indirect information that may assist future ab initio descrip-
tions of the physical properties of single-electron transistors
or T-shaped devices. The two mappings of the Kondo-regime
conductances to the universal function G° redefine the ulti-
mate target of such ab initio problems, from conductance
curves to phase shifts and Kondo temperatures. In a less
challenging arena, they bring Kondo-regime conductance
curves within the reach of the Bethe-ansatz approach.3*3

PHYSICAL REVIEW B 80, 235318 (2009)

Additionally, on the basis of the experience with thermody-
namical properties,’®37 we also expect the mappings to offer
benchmarks to check the accuracy of numerically or analyti-
cally computed transport properties for model Hamiltonians
describing quantum-dot arrays.
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